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ABSTRACT

The performance of three recently proposed second-order closure models is tested in

benchmark turbulent shear flows. Both homogeneous shear flow and the log-layer of an

equilibrium turbulent boundary layer are considered for this purpose. An objective analysis

of the results leads to an assessment of these models that stands in contrast to that recently

published by other authors. A variety of pitfalls in the formulation and testing of second-

order closure models are uncovered by this analysis.
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INTRODUCTION

The need for advanced turbulence models to reliably compute the complex aerodynamic

flows of technological interest has led to a resurgence of interest in second-order closure mod-

els. Consequently, the recent papers by Shih, Chen and Lumley 1 and Shih and Lumley 2,

which reported tests of second-order closure models in turbulent shear flows, attracted our

attention. In these papers, results were presented which appear to indicate that the Shih-

Lumley model s performs better than other recently proposed second-order closures in homo-

geneous shear flow as well as in other boundary-free turbulent shear flows. However, our own

comparative studies of second-order closure models in benchmark turbulent shear flows have

yielded a different picture. The purpose of the current paper is to present these alternative

results for comparison.

The predictions of three second-order closure models recently proposed by Shih and

Lumley 2's, Fu, Launder and Tselepidakis 4 and Speziale, Sarkar and Gatski 5 will be com-

pared in two benchmark turbulent flows: homogeneous shear flow and the log-layer of an

equilibrium turbulent boundary layer. These flows are selected since the former constitutes

a basic building-block free turbulent shear flow whereas the latter serves as a cornerstone for

the calculation of practical wall-bounded turbulent flows of engineering interest. Particular

attention will be paid to evaluating the ability of each model to accurately predict the equi-

librium values for the Reynolds stress anisotropies. However, for the case of homogeneous

shear flow, model predictions for time evolving fields will also be compared. Objective means

for evaluating the performance of the models will be provided and pitfalls in the formulation

and evaluation of models are uncovered that have led to previously published assessments

that are misleading.

THE TURBULENT SHEAR FLOWS TO BE CONSIDERED

We will consider incompressible turbulent shear flows with the mean velocity gradient

tensor 0ff--Z/= $5i15j2 (1)
0a:j

where 6ij is the Kronecker delta and S is shear rate. In homogeneous shear flow, the shear rate

S is constant and is applied in an unbounded flow domain yielding spatially homogeneous

turbulence statistics. For this, as well as any homogeneous turbulence, the Reynolds stress

tensor rij is a solution of the transport equation s

+ j offi off,= -r,kox--i- rjkox--i + *'j - (2)



where rlj -- uiuj and

(3)

are, respectively, the pressure-strain correlation and dissipation rate tensor (here, p is the

fluctuating pressure, ui is the fluctuating Velocity, v is the kinematic viscosity, and an overbar

represents an ensemble mean). Since :_: _==

2 6
_ij -eij = IIq - -_e i.i (4)

where IIi i _2 _ij _ Dgij given that Dgi_ 1S the devlatorlc part of the dissipation rate tensor

(e = ½e,), cl_0sure is achieved oncemodels for rl o and e are provided. In most existing

second-order closure models, Deij is neglected while II 0 and e are modeled in the general

form:

where

IIij = e.Aij(b) + KMijk,(b) Cg-_k
Cgx!

e cO-oi e 2

(5)

(6)

2

K = 1 bij - rii- 5K6i.i (7)
-_r,, 2K

are the=turbulent kinetic energy and:Reynolds stress =anlsotropy tensor, respectlvely. Here,

.4/j and Miikz are dimensionless tensor functions of blj and possibly the turbulence Reynolds

number Rt - K2/ve; C_1 and C_2 are either constants or functions of the second and third

invariants (II, III) of bij as well as Rt. The full form of the three models to be considered

- the Shih-Lumley (SL) model, the Fu, Launder and Tselepidakis (FLT) model and the

Speziale, Sarkar and Gatski (SSG) model - are provided in the Appendix.

For homogeneous shear flow, each of the models - consisten_ wi_h physical and numerical

experiments - predict that the anlsotropy tensor blj and shear parameter SK/¢ achieve equi-

librium values that are independent of the initial conditions (see Tavoularis and Corrsin T,

Rogers, Moin and Reynolds s and Tavoularis and Karnikg). This equilibrium state is associ-

ated with solutions where b;s = 0 or equivalently,

= _ _j_-

where P = -T_iO_jcgzi is the turbulence production.

(2) yields the system of algebraic equations (see Abid and Speziale i°)

rijT12 (_/___--1) 7i2(_j1__ Tj2¢ 2T12 (¢____)= --- + H, +
K K _, _o/e K

(8)

The substitution of (1) and (8) into

-1

6,j (9)
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where II;i -- IIij/SK is, for the turbulent shear flows to be considered, a function of rij/K

and P/e whose specific form depends on the pressure-strain model chosen. In deriving (9),

the identity

e- K (10)

has been used. Once the equilibrium value of Pie is specified (and Eq. (7) is utilized), it

is straightforward to obtain the equilibrium values of bii from a numerical solution of (9).

These equilibrium values are determined exclusively by the pressure-strain model.

In the logarithmic region of an equilibrium turbulent boundary layer, the mean velocity

gradient tensor is of the general form (1) and there is a production-equals-dissipatlon equi-

librium where the turbulent diffusion terms vanish in the Reynolds stress transport equation.

Consequently, (9) yields the equilibrium Reynolds stress anisotropies for the log-layer when

:P/e = 1 (see Abid and Spezialel°). In contrast to this, homogeneous shear flow achieves

an equilibrium state where 7_/_ > 1 (physical and numerical experiments T-v have indicated

that 1.4 _< PIe < 1.8).

DISCUSSION OF RESULTS

A comparison of the results predicted by the pressure-strain models of Shih and Lumley 2'3,

Fu, Launder and Tselepidakis 4 and Speziale, Sarkar and Gatski 5 will now be made. In

Figures l(a) and l(b), the model predictions for the norm of the slow and rapid parts of the

pressure-strain correlation are compared with the DNS results of Rogers, Moin and Reynolds s

forhomogeneousshearflow = + wherethesuperscripts(S)and(R)denote,
respectively, the slow and rapid parts; (II_jII_j) 1/2 denotes the L2 norm of II_j)). These

results are similar to those used by Shih and Lumley 2 to conclude that the Shih-Lumley

model performs the best of these three models and that the SSG model performs poorly.

Such a conclusion is highly misleading. The SSG model is a model for the total pressure-

strain correlation and not for its separate slow and rapid parts. The standard hierarcl_y of

pressure-strain models (5) are only theoretically justified for homogeneous turbulent flows

that are near equilibrium (as shown by Speziale, Gatski and Sarkar 11, both the slow and rapid

parts of the pressure-strain correlation depend nonlinearly on the mean velocity gradients at

retarded times in non-equilibrium turbulent flows). When (5) is thought of as the simplified

equilibrium form of a more general pressure-strain model it becomes ambiguous as to which

part of (5) represents the slow pressure-straln and which part of (5) represents the rapid

pressure-strain. It can only be said definitively that eJtij is the slow pressure-strain in the

limit of relaxational turbulent flows and that K.MijktO-_k/Oxt is the rapid pressure-strain in

the rapid distortion limit. H This ambiguity causes no problem since only the total pressure-



strain correlation is needed in (2) for the calculation of the Reynolds stresses. When the

model predictions for the norm of the total pressure-strain correlation are compared with

the DNS of Rogers et al. s for homogeneous shear flow a rather different picture emerges as

can be seen in Figure 1(c). The SSG model performs as well, if not better, than the SL and

FLT pressure-strain models. Furthermore, it was shown by Speziale, Sarkar and Gatski 11

that none of the other models are capable of predicting the individual slow or rapid parts of

the pressure-strain correlation for a wide range of homogeneous turbulent flows. The results

presented in $hih and Lumley 2 are misleading in this regard.

Comparisons such as those shown in Figure 1 are not very helpful for determining the

predictive capabilities of a pressure-strain model in turbulent shear flows. A better test for

gauging the performance of a model is to determine its ability to predict accurate equilib-

rium values for the Reynolds stress anisotropies. These are the crucial physical quantities

in homogeneous shear flow that are independent_0f the initial conditions and, therefore,

repeatable. Over thirty independent test runs of homogeneous shear flow in reported phys-

ical and numerical experiments _-9 have yielded equilibrium values for the Reynolds stress

anisotropies that lie within 10% of one another. On the other hand, the time evolutions of

the individual Reynolds stresses vary by factors of 3 or 4 depending on the initial conditions

of the test case.

In Table 1, the equilibrium Reynolds stress anisotropies predicted by the SL, FLT and

SSG models are compared with the experimental results for homogeneous shear flow for

79/e - 1.5. This value of T'/e is chosen since it is the average value obtained from the

most recent experiments. The SSG model is in closest agreement with the experimental

data whereas the SL model exhibits the largest discrepancies. The same trend is exhibited

for other equilibrium values of 7_/¢ in the experimental range of 1.4 - 1.8 (see Abid and

Speziale 1° for more details).

As discussed earlier, the equilibrium Reynolds stress anisotropies for the log-layer of a

two-dimensional turbulent boundary layer can be obtained from (9), after setting 7_/e = 1.

The results obtained from the SL, FLT and SSG models are compared with experimental

data 12'13 in Table 2. The results obtained are similar to those obtained for homogeneous

shear flow: the SSG model is in the closest agreement with the experimental data while the

SL model exhibits the largest deviations. In regard to the latter point, it is surprising how

poorly the SL model performs in its prediction of the normal Reynolds stress anisotropies.

In Figure 2, the model predictions for the time evolution of the turbulent kinetic energy

in homogeneous shear flow are shown for two test cases: the large-eddy simulation (LES)

of Bardina et al)4 and the DNS of Rogers et al.s (run C128X). Here, the dimensionless

turbulent kinetic energy and dimensionless time are given by K" = K/Ko and t* = St,



respectively. These results exhibit the same trend as before: the SSG model performs the

best and the SL model has the largest deviations. The low growth rate predicted by the $L

model arises from its underprediction of the equilibrium value of b12 (see Table 1).

This brings us to the basic question as to why the SL model performs poorly in these

simple shear flows. As discussed in Shih et al), the SL model was, to a large extent, calibrated

based on realizability constraints. It was recently shown by Speziale, Abid and Durbin 15 that

the SL model yields unrealizable results in homogeneous shear flow due to an error in their

analysis. In Figure 3, the time evolution of the invarlant function F - 1 + 911 + 27111

predicted by each model in homogeneous shear flow is shown for the anisotropic initial

conditions: bll = -0.32, b22 = b33 = 0.16, bl_ = b23 = b13 = 0, and SK/e = 15. For

realizable turbulence, we must have F > 0. It is clear that for these initial conditions, the

FLT and SSG models yield realizable solutions whereas the SL model yields unrealizable

results! Hence the primary theoretical constraint by which the SL model was formulated is

in error.

In conclusion, it must be said that the good performance of a model in these basic

turbulent shear flows is no guarantee that it will perform weU in more complex turbulent

flows. However, these simple test flows do bear directly on how we]] a model will perform

in equilibrium turbulent boundary layers which form a cornerstone for many engineering

applications. A model that cannot predict these simple test cases accurately should be

abandoned for use in more complex engineering flows.
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APPENDIX

The detailed form of the turbulence models considered in the paper are as follows:

Shih _ Lumley Model

IIij = -C, ebij + 4 K-Sij + 12asK (bikSjk + bjk-Sik
5

-2 bk:Skt6_j ) + 4 (2- Ta_)K(b_k'_jk + bjk_o,)

q-_K(bitbtmSjm -I- bjlbtm-Sim 2bik-_k:btj

-3bk,Sktbij) + 4 K(bltb, ._i _ + b.i,b, ._)

F
+8o.1 +62.4(-II+ 2.3Iiz)]}

C1 =2+ _-

F = 1 + 9II + 27III

II = -lbi._b_i, III = _bi_bjkbki2

4 K 2
.Re t --

9 v¢

as=i- _ 1+ 5 /

7
exp(-2.83/_FR-_)[1 0.331n(1 5511)]6'_1 = 1.20, C_2 = g + 0.49 - -

Fu, Launder gJ Tselepidakis Model

IXij : -Ca$biJ _- C2_ ( b'kbkj - l bklbkl'j_3 ]

26
K "b "_ 4 K (bikbki-S.ii

+-i-5 [ _k ._k+ b/_k ) + 5

+bikbkiSit - 2bikSktbt.i - 3bktS_tbi1)

14

(bikbktwit q- bjkbkt_it) - 5 K [8II(bik_jk+5

+_,_) + _2(_,_,_,_ + _,_,_,)]

6

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

(AT)

(A8)



c1 = -120HJ-_- 2J-_ + 2, c2 = 144xxJ-_

C_I = 1.44, C_2 = 1.90

(A9)

(A10)

Speziale, Sarkar eJ Gatski Model

____ ( -- _bkll bkl_ij) + (C3 C;I[_)KSij'II 0 -(Cle + C_P)b 0 + Cze \bikbkj

(All)

+C4K (b,kSi_ + bjkS,, -- _bk,-Sk,50) + CsK(b,k_jk + bid@k )

4

C1 = 3.4, C_ = 1.80, V2 = 4.2, C3 = _, C_ = 1.30, C4 = 1.25, C5 = 0.40 (A12)

Ih = bobo (A13)

C_1 = 1.44, C.2 = 1.83. (A14)

In these models, Sij and @j are, respectively, the symmetric and antisymmetric parts of the

mean velocity gradient tensor _9_i/cgzj which are given by

1 (c'_; 0-_j '_
-$,5= _ \ O_,j+ 0_, ] ' (A15)

(A16)
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Equilibrium
Values

all

512

b22

b33

SL Model

0.105

-0.121

-0.107

0.002

FLT Model

0.177

-0.157

-0.122

-0.055

SSG Model

0.214

-0.163

-0.140

-0.074

Experimental

Data

0.20 to 0.21

-0.14 to -0.16

-0.14 to -0.15

-0.05 to -0.07

Table 1. Equilibrium Reynolds stress anisotropies in homogeneous shear flow: Comparison

of the model predictions with physical and numerical experiments, z-9
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Equilibrium
Values

all

b12

b22

533

SL Model

0.079

-0.116

-0.082

0.003

FLT Model

0.141

-0.162

-0.099

-0.042

SSG Model

0.201

-0.160

-0.126

-0.075

Experimental
Data

0.20 to 0.23

-0.14 to -0.16

-0.13 to-0.15

-0.05 to-0.10

Table 2. Reynolds stress anisotropies in the log-layer of an equilibrium turbulent boundary

layer: Comparison of the model predictions with experimentsJ 2-13
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Figure 1. Comparison of the model predictions for the norm of the pressure-strain correlation

with the direct numerical simulation of Rogers et al. s for homogeneous shear flow (run

C128U): (a) slow part, (b) rapid part and (c) total.
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